Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.262
Filtrar
1.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474553

RESUMO

This paper reports an innovative study that aims to address key issues in the efficient recycling of wastepaper cellulose. The research team utilized the temperature-responsive upper critical solution temperature (UCST) polymer P(NAGA-b-DMA) in combination with the LytA label's affinity for choline analogs. This innovative approach enabled them to successfully develop a novel soluble immobilized enzyme, P(NAGA-b-DMA)-cellulase. This new enzyme has proven highly effective, significantly enhancing the degradation of wastepaper cellulose while demonstrating exceptional stability. Compared with the traditional insoluble immobilized cellulase, the enzyme showed a significant improvement in the pH, temperature stability, recycling ability, and storage stability. A kinetic parameter calculation showed that the enzymatic effectiveness of the soluble immobilized enzyme was much better than that of the traditional insoluble immobilized cellulase. After the immobilization reaction, the Michaelis constant of the immobilized enzyme was only increased by 11.5%. In the actual wastepaper degradation experiment, the immobilized enzyme was effectively used, and it was found that the degradation efficiency of wastepaper cellulose reached 80% of that observed in laboratory conditions. This novel, thermosensitive soluble immobilized cellulase can efficiently catalyze the conversion of wastepaper cellulose into glucose under suitable conditions, so as to further ferment into environmentally friendly biofuel ethanol, which provides a solution to solve the shortage of raw materials and environmental protection problems in the paper products industry.


Assuntos
Celulase , Enzimas Imobilizadas , Enzimas Imobilizadas/metabolismo , Celulose/metabolismo , Celulase/metabolismo , Temperatura , Polímeros , Hidrólise
2.
Int J Biol Macromol ; 265(Pt 2): 130980, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508569

RESUMO

D-allulose, an ideal low-calorie sweetener, is primarily produced through the isomerization of d-fructose using D-allulose 3-epimerase (DAE; EC 5.1.3.30). Addressing the gap in available immobilized DAE enzymes for scalable commercial D-allulose production, three core-shell structured organic-inorganic composite silica-based carriers were designed for efficient covalent immobilization of DAE. Natural inorganic diatomite was used as the core, while 3-aminopropyltriethoxysilane (APTES), polyethyleneimine (PEI), and chitosan organic layers were coated as the shells, respectively. These tailored carriers successfully formed robust covalent bonds with DAE enzyme conjugates, cross-linked via glutaraldehyde, and demonstrated enzyme activities of 372 U/g, 1198 U/g, and 381 U/g, respectively. These immobilized enzymes exhibited an expanded pH tolerance and improved thermal stability compared to free DAE. Particularly, the modified diatomite with PEI exhibited a higher density of binding sites than the other carriers and the PEI-coated immobilized DAE enzyme retained 70.4 % of its relative enzyme activity after ten cycles of reuse. This study provides a promising method for DAE immobilization, underscoring the potential of using biosilica-based organic-inorganic composite carriers for the development of robust enzyme systems, thereby advancing the production of value-added food ingredients like D-allulose.


Assuntos
Terra de Diatomáceas , Enzimas Imobilizadas , Racemases e Epimerases , Racemases e Epimerases/metabolismo , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Frutose/metabolismo , Estabilidade Enzimática
3.
Biotechnol J ; 19(3): e2300615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472086

RESUMO

Phytosterols usually have to be esterified to various phytosterol esters to avoid their disadvantages of unsatisfactory solubility and low bioavailability. The enzymatic synthesis of phytosterol esters in a solvent-free system has advantages in terms of environmental friendliness, sustainability, and selectivity. However, the limitation of the low stability and recyclability of the lipase in the solvent-free system, which often requires a relatively high temperature to induce the viscosity, also increased the industrial production cost. In this context, a low-cost material, namely diatomite, was employed as the support in the immobilization of Candida rugosa lipase (CRL) due to its multiple modification sites. The Fe3 O4 was also then introduced to this system for quick and simple separation via the magnetic field. Moreover, to further enhance the immobilization efficiency of diatomite, a modification strategy which involved the octadecyl and sulfonyl group for regulating the hydrophobicity and interaction between the support and lipase was successfully developed. The optimization of the ratio of the modifiers suggested that the -SO3 H/C18 (1:1.5) performed best with an enzyme loading and enzyme activity of 84.8 mg·g-1 and 54 U·g-1 , respectively. Compared with free CRL, the thermal and storage stability of CRL@OSMD was significantly improved, which lays the foundation for the catalytic synthesis of phytosterol esters in solvent-free systems. Fortunately, a yield of 95.0% was achieved after optimizing the reaction conditions, and a yield of 70.0% can still be maintained after six cycles.


Assuntos
Terra de Diatomáceas , Enzimas Imobilizadas , Fitosteróis , Enzimas Imobilizadas/metabolismo , Esterificação , Lipase/metabolismo , Biocatálise , Solventes , Fitosteróis/metabolismo , Esteróis , Estabilidade Enzimática , Ésteres
4.
Bioprocess Biosyst Eng ; 47(3): 313-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438572

RESUMO

Molecular docking is an important computational analysis widely used to predict the interaction of enzymes with several starting materials for developing new valuable products from several starting materials, including oils and fats. In the present study, molecular docking was used as an efficient in silico screening tool to select biocatalysts with the highest catalytic performance in butyl esters production in a solvent-free system, an eco-friendly approach, via direct esterification of free fatty acids from Licuri oil with butanol. For such purpose, three commercial lipase preparations were used to perform molecular docking studies such as Burkholderia cepacia (BCL), Porcine pancreatic (PPL), and Candida rugosa (CRL). Concurrently, the results obtained in BCL and CRL are the most efficient in the esterification process due to their higher preference for catalyzing the esterification of lauric acid, the main fatty acid found in the licuri oil composition. Meanwhile, PPL was the least efficient because it preferentially interacts with minor fatty acids. Molecular docking with the experimental results indicated the better performance in the synthesis of esters was BCL. In conclusion, experimental results analysis shows higher enzymatic productivity in esterification reactions of 1294.83 µmol/h.mg, while the CRL and PPL demonstrated the lowest performance (189.87 µmol / h.mg and 23.96 µmol / h.mg, respectively). Thus, molecular docking and experimental results indicate that BCL is a more efficient lipase to produce fatty acids and esters from licuri oil with a high content of lauric acid. In addition, this study also demonstrates the application of molecular docking as an important tool for lipase screening to achieve more sustainable production of butyl esters with a view synthesis of biolubricants.


Assuntos
Ácidos Graxos , Lipase , Animais , Suínos , Lipase/química , Simulação de Acoplamento Molecular , Domínio Catalítico , Ácidos Graxos/química , Esterificação , Ésteres , Ácidos Láuricos , Enzimas Imobilizadas/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473992

RESUMO

Multi-enzymatic strategies have shown improvement in bioconversion during cofactor regeneration. In this study, purified l-arabinitol 4-dehydrogenase (LAD) and nicotinamide adenine dinucleotide oxidase (Nox) were immobilized via individual, mixed, and sequential co-immobilization approaches on magnetic nanoparticles, and were evaluated to enhance the conversion of l-arabinitol to l-xylulose. Initially, the immobilization of LAD or Nox on the nanoparticles resulted in a maximum immobilization yield and relative activity of 91.4% and 98.8%, respectively. The immobilized enzymes showed better pH and temperature profiles than the corresponding free enzymes. Furthermore, co-immobilization of these enzymes via mixed and sequential methods resulted in high loadings of 114 and 122 mg/g of support, respectively. Sequential co-immobilization of these enzymes proved more beneficial for higher conversion than mixed co-immobilization because of better retaining Nox residual activity. Sequentially co-immobilized enzymes showed a high relative conversion yield with broader pH, temperature, and storage stability profiles than the controls, along with high reusability. To the best of our knowledge, this is the first report on the mixed or sequential co-immobilization of LAD and Nox on magnetic nanoparticles for l-xylulose production. This finding suggests that selecting a sequential co-immobilization strategy is more beneficial than using individual or mixed co-immobilized enzymes on magnetic nanoparticles for enhancing conversion applications.


Assuntos
Enzimas Imobilizadas , Nanopartículas de Magnetita , Álcoois Açúcares , Enzimas Imobilizadas/metabolismo , Xilulose , Temperatura , Concentração de Íons de Hidrogênio , Estabilidade Enzimática
6.
Bioresour Technol ; 399: 130599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493938

RESUMO

This study established a Candida rugosa lipase (CRL) system to catalyze triolein and ethyl ferulate interesterification. The products were identified, and the binding mode between the substrates and CRL was predicted through molecular docking. Three methods for preparing CRL-AuNPs were proposed and characterized. It was found that the addition of 40 mL of 15 nm gold nanoparticles increased the CRL activity from 3.05 U/mg to 4.75 U/mg, but the hybridization efficiency was only 32.7 %. By using 4 mL of 0.1 mg/mL chloroauric acid, the hybridization efficiency was improved to 50.7 %, but the enzyme activity was sharply decreased. However, when the molar ratio of Mb to HAuCl4 was 0.2, the hybridization efficiency increased to 71.8 %, and the CRL activity was also enhanced to 5.98 U/mg. Under optimal conditions, the enzyme activity of CRL-AuNPs③ was maintained at 95 % after 6 repetitions and 85.6 % after 30 days at room temperature.


Assuntos
Ácidos Cafeicos , Lipase , Nanopartículas Metálicas , Saccharomycetales , Lipase/metabolismo , Ouro , Enzimas Imobilizadas/metabolismo , Trioleína , Simulação de Acoplamento Molecular , Candida/metabolismo , Estabilidade Enzimática
7.
Bioresour Technol ; 397: 130505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423485

RESUMO

Enzyme immobilization is an effective method for improving the stability and reusability. However, linking at random sites on the enzyme results in low catalytic efficiency due to blockage of the active site or conformational changes. Therefore, controlling the orientation of enzymes on the carrier has been developed. Here, the site-specific mutation and the SpyTag/SpyCatcher systems were used to prepare a site-directed immobilized enzyme. The thermal stability of the immobilized enzyme was better than that of the free enzyme, and ≥80 % of the catalytic activity was retained after 30 days of storage. Furthermore, the Michaelis constant (Km) and the turnover number (kcat) of the immobilized enzyme were 5.23-fold lower and 6.11-fold higher than those of the free enzyme, respectively, which appeared to be related to changes in secondary structure after immobilization. These findings provide a new and effective option for enzyme-directed immobilization.


Assuntos
Enzimas Imobilizadas , Nanopartículas , Enzimas Imobilizadas/metabolismo , Estabilidade Enzimática , Catálise , Concentração de Íons de Hidrogênio
8.
Anal Chem ; 96(10): 4076-4085, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408165

RESUMO

In this work, direct electron transfer (DET)-type extended gate field effect transistor (EGFET) enzymatic sensors were developed by employing DET-type or quasi-DET-type enzymes to detect glucose or lactate in both 100 mM potassium phosphate buffer and artificial sweat. The system employed either a DET-type glucose dehydrogenase or a quasi-DET-type lactate oxidase, the latter of which was a mutant enzyme with suppressed oxidase activity and modified with amine-reactive phenazine ethosulfate. These enzymes were immobilized on the extended gate electrodes. Changes in the measured transistor drain current (ID) resulting from changes to the working electrode junction potential (φ) were observed as glucose and lactate concentrations were varied. Calibration curves were generated for both absolute measured ID and ΔID (normalized to a blank solution containing no substrate) to account for variations in enzyme immobilization and conjugation to the mediator and variations in reference electrode potential. This work resulted in a limit of detection of 53.9 µM (based on ID) for glucose and 2.12 mM (based on ID) for lactate, respectively. The DET-type and Quasi-DET-type EGFET enzymatic sensor was then modeled using the case of the lactate sensor as an equivalent circuit to validate the principle of sensor operation being driven through OCP changes caused by the substrate-enzyme interaction. The model showed slight deviation from collected empirical data with 7.3% error for the slope and 8.6% error for the y-intercept.


Assuntos
Técnicas Biossensoriais , Elétrons , Técnicas Biossensoriais/métodos , Glucose/metabolismo , Glucose 1-Desidrogenase/metabolismo , Ácido Láctico , Enzimas Imobilizadas/metabolismo , Eletrodos
9.
Food Chem ; 446: 138773, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402762

RESUMO

Multiple enzymes induce biological cascade catalysis is essential in nature and industrial production. However, the shortcomings of enzymes, including unsatisfactory stability, reusability, and sensitivity in harsh microenvironment, have restricted their broader use. Here, we report a facile method for fabricating a cascade system by combining the benefits of immobilized enzymes and biomimetic catalysis based on magnetic metal-organic framework nanoflowers (mMOFNFs). mMOFNFs prepared through the layered double hydroxide-derived strategy exhibited remarkable peroxidase-like activity and accessible amino interface, enabling it to serve not only as a reliable carrier for α-glucosidase and glucose oxidase fixation, but also as a nanozyme participating in cascade. On this basis, a colorimetric biosensor of excellent sensitivity and selectivity for α-amylase detection was constructed with a wide range (2-225 U L-1), low detection limit (2.48 U L-1), and rapid operation (30 min). This work provides a versatile strategy for establishing multi-enzyme cascade systems and rapid analysis of α-amylase.


Assuntos
Estruturas Metalorgânicas , alfa-Amilases , Biomimética/métodos , Fermentação , Enzimas Imobilizadas/metabolismo , Catálise , Colorimetria/métodos , Fenômenos Magnéticos
10.
Chembiochem ; 25(4): e202300843, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38169079

RESUMO

Using lipases to catalyze the synthesis of the most differentiated type of compounds remains one of the major challenges among scientists. Seeking more economic and advantageous catalysts is a current goal of green chemistry. In this work, we demonstrate the potential of a chemically modified form of lipase from Thermomyces lanuginosus (cmLTL) for the synthesis of both hydrophobic (heptyl heptanoate, heptyl octanoate, heptyl decanoate, decyl heptanoate, decyl octanoate and decyl decanoate) and amphiphilic (2-(2-ethoxyethoxy)ethyl oleate and 2-(2-ethoxyethoxy)ethyl linoleate) esters, in bulk. The results were compared with its native (LTL) and immobilized (imLTL) forms. The data revealed that LTL showed poor activity for all reactions performed with n-heptane (η<20 %). ImLTL was able to synthesize all hydrophobic esters (η>60 %), with exception of the short ester, heptyl heptanoate. cmLTL was the only form of LTL capable of producing hydrophobic and amphiphilic esters, without compromising the yield when the reactions were performed under solvent-free conditions (>50 %). Molecular modeling showed that the active pocket of cmLTL is able to deeply internalize transcutol, with stronger interactions, justifying the outstanding results obtained. Furthermore, owing to the possibility of cmLTL filtration, the reusability of the catalyst is ensured for at least 6 cycles, without compromising the reaction yields.


Assuntos
Ésteres , Eurotiales , Lipase , Solventes , Esterificação , Lipase/química , Decanoatos , Heptanoatos , Enzimas Imobilizadas/metabolismo
11.
Int J Biol Macromol ; 261(Pt 1): 129807, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290635

RESUMO

ß-Agarase was biotinylated and immobilized onto streptavidin-conjugated magnetic nanoparticles to provide insights into the effect of immobilization sites on ß-agarase immobilization. Results showed that, compared with free enzyme, the stability of prepared immobilized ß-agarases through amino or carboxyl activation were both significantly improved. However, the amino-activated immobilized ß-agarase showed higher thermostability and catalytic efficiency than the carboxyl-activated immobilized ß-agarase. The relative activity of the former was 65.00 % after incubation at 50 °C for 1 h, which was 1.77-fold higher than that of the latter. Additionally, amino-activated immobilization increased the affinity of the enzyme to the substrate, and its maximum reaction rate (0.68 µmol/min) was superior to that of carboxyl-activated immobilization (0.53 µmol/min). The visualization results showed that the catalytic site of ß-agarase after carboxyl-activated immobilization was more susceptible to the immobilization process, and the orientation of the enzyme may also hinder substrate binding and product release. These results suggest that by pre-selecting appropriate activation sites and enzyme orientation, immobilized enzymes with higher catalytic activity and stability can be obtained, making them more suitable for the application of continuous production.


Assuntos
Biotina , Enzimas Imobilizadas , Estreptavidina , Enzimas Imobilizadas/metabolismo , Glicosídeo Hidrolases/metabolismo , Estabilidade Enzimática
12.
Bioresour Technol ; 395: 130325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228219

RESUMO

Herein, three enzymes (cellulase, ß-glucosidase, and pectinase) with synergistic effects were co-immobilized on the Eudragit L-100, and the recovery of co-immobilized enzymes from solid substrates were achieved through the reversible and soluble property of the carrier. The optimization of enzyme ratio overcomed the problem of inappropriate enzyme activity ratio caused by different immobilization efficiencies among enzymes during the preparation process of co-immobilized enzymes. The co-immobilized enzymes were utilized to catalytically hydrolyze cellulose from corn straw into glucose, achieving a cellulose conversion rate of 74.45% under conditions optimized for their enzymatic characteristics and hydrolytic reaction conditions. As a result of the reversibility and solubility of the carrier, the co-immobilized enzymes were recovered from the solid substrate after five cycles, retaining 54.67% of the enzyme activity. The aim of this study is to investigate the potential of co-immobilizing multiple enzymes onto the Eudragit L-100 carrier for the synergistic degradation of straw cellulose.


Assuntos
Celulase , Celulose , Celulose/metabolismo , Zea mays/metabolismo , Enzimas Imobilizadas/metabolismo , Ácidos Polimetacrílicos , Celulase/metabolismo , Hidrólise
13.
J Environ Manage ; 353: 120114, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280250

RESUMO

The laccase mediator system (LMS) with a broad substrate range has attracted much attention as an efficient approach for water remediation. However, the practical application of LMS is limited due to their high solubility, poor stability and low reusability. Herein, the bimetallic Cu/ZIFs encapsulated laccase was in-situ grown in poly(vinyl alcohol) (PVA) polymer matrix. The PVA-Lac@Cu/ZIFs hydrogel was formed via one freeze-thawing cycle, and its catalytic stability was significantly improved. The mediator was further co-immobilized on the hydrogel, and this hierarchically co-immobilized ABTS/PVA-Lac@Cu/ZIFs hydrogel could avoid the continuous oxidation reaction between laccase and redox mediators. The co-immobilized LMS biocatalyst was used to degrade malachite green (MG), and the degradation rate was up to 100 % within 4 h. More importantly, the LMS could be recycled synchronously from the dye solutions and reused to degrade MG multiple times. The degradation rate remained above 69.4 % after five cycles. Furthermore, the intermediate products were detected via liquid chromatography-mass spectrometry, and the potential degradation pathways were proposed. This study demonstrated the significant potential of utilizing the MOF nanocrystals and hydrogel as a carrier for co-immobilized LMS, and the effective reuse of both laccase and mediator was promising for laccase application in wastewater treatment.


Assuntos
Enzimas Imobilizadas , Lacase , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lacase/química , Lacase/metabolismo , Hidrogéis/química , Corantes de Rosanilina/química
14.
J Biotechnol ; 382: 88-96, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280467

RESUMO

l-Lactate oxidase has important applications in biosensing and finds increased use in biocatalysis. The enzyme has been characterized well, yet its immobilization has not been explored in depth. Here, we studied immobilization of Aerococcus viridansl-lactate oxidase on porous carriers of variable matrix material (polymethacrylate, polyurethane, agarose) and surface functional group (amine, Ni2+-loaded nitrilotriacetic acid (NiNTA), epoxide). Carrier activity (Ac) and immobilized enzyme effectiveness (ɳ) were evaluated in dependence of protein loading. Results show that efficient immobilization (Ac: up to 1450 U/g carrier; ɳ: up to 65%) requires a hydrophilic carrier (agarose) equipped with amine groups. The value of ɳ declines sharply as Ac increases, probably due to transition into diffusional regime. Untagged l-lactate oxidase binds to NiNTA carrier similarly as N-terminally His-tagged enzyme. Lixiviation studies reveal quasi-irreversible enzyme adsorption on NiNTA carrier while partial release of activity (≤ 25%) is shown from amine carrier. The desorbed enzyme exhibits the same specific activity as the original l-lactate oxidase. Collectively, our study identifies basic requirements of l-lactate oxidase immobilization on solid carrier and highlights the role of ionic interactions in enzyme-surface adsorption.


Assuntos
Aerococcus , Aerococcus/metabolismo , Sefarose , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Enzimas Imobilizadas/metabolismo , Aminas
15.
Biomacromolecules ; 25(2): 809-818, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181098

RESUMO

Enzyme immobilization in nanoparticles is of interest for boosting their catalytic applications, yet rational approaches to designs achieving both high enzyme loading and activation remain a challenge. Herein, we report an electrostatically mediated in situ polymerization strategy that simultaneously realizes enzyme immobilization and activation. This was achieved by copolymerizing cationic monomers with a cross-linker in the presence of the enzyme lipase (anionic) as the template, which produces enzyme-loaded nanogels. The effects of different control factors such as pH, lipase dosage, and cross-linker fraction on nanogel formation are investigated systematically, and optimal conditions for enzyme loading and activation have been determined. A central finding is that the cationic polymer network of the nanogel creates a favorable environment that not only protects the enzyme but also boosts enzymatic activity nearly 2-fold as compared to free lipase. The nanogels improve the stability of the lipase to tolerate a broader working range of pH (5.5-8.5) and temperature (25-70 °C) and allow recycling such that after six cycles of reaction, 70% of the initial activity is conserved. The established fabrication strategy can be applied generally to different cationic monomers, and most of these nanogels exhibit adequate immobilization and activation of lipase. Our study confirms that in situ polymerization based on electrostatic interaction provides a facile and robust strategy for enzyme immobilization and activation. The wide variety of ionic monomers, therefore, features great potential for developing functional platforms toward satisfying enzyme immobilization and demanding applications.


Assuntos
Enzimas Imobilizadas , Lipase , Polietilenoglicóis , Polietilenoimina , Nanogéis , Estabilidade Enzimática , Polimerização , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Concentração de Íons de Hidrogênio
16.
Appl Microbiol Biotechnol ; 108(1): 106, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38217255

RESUMO

Glioblastoma is one of the most lethal tumors, displaying striking cellular heterogeneity and drug resistance. The prognosis of patients suffering from glioblastoma after 5 years is only 5%. In the present work, capsaicin analogues bearing modifications on the acyl chain with long-chain fatty acids showed promising anti-tumoral activity by its cytotoxicity on U-87 and U-138 glioblastoma multiforme cells. The capsaicin analogues were enzymatically synthetized with cross-linked enzyme aggregates of lipase B from Candida antarctica (CALB). The catalytic performance of recombinant CALB-CLEAs was compared to their immobilized form on a hydrophobic support. After 72 h of reaction, the synthesis of capsaicin analogues from linoleic acid, docosahexaenoic acid, and punicic acid achieved a maximum conversion of 69.7, 8.3 and 30.3% with CALB-CLEAs, respectively. Similar values were obtained with commercial CALB, with conversion yields of 58.3, 24.2 and 22% for capsaicin analogues from linoleic acid, DHA and punicic acid, respectively. Olvanil and dohevanil had a significant cytotoxic effect on both U-87 and U-138 glioblastoma cells. Irrespective of the immobilization form, CALB is an efficient biocatalyst for the synthesis of anti-tumoral capsaicin derivatives. KEY POINTS: • This is the first report concerning the enzymatic synthesis of capsaicin analogues from docosahexaenoic acid and punicic acid with CALB-CLEAs. • The viability U-87 and U-138 glioblastoma cells was significantly affected after incubation with olvanil and dohevanil. • Capsaicin analogues from fatty acids obtained by CALB-CLEAs are promising candidates for therapeutic use as cytotoxic agents in glioblastoma cancer cells.


Assuntos
Capsaicina , Glioblastoma , Humanos , Capsaicina/farmacologia , Enzimas Imobilizadas/metabolismo , Glioblastoma/tratamento farmacológico , Proteínas Fúngicas/metabolismo
17.
Appl Microbiol Biotechnol ; 108(1): 149, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240797

RESUMO

In this study, we successfully applied the strategy of combining tandem promoters and tandem signal peptides with overexpressing signal peptidase to efficiently express and produce γ-glutamyl peptidase (GGT) enzymes (BsGGT, BaGGT, and BlGGT) from Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus licheniformis in Bacillus subtilis ATCC6051Δ5. In order to avoid the problem of instability caused by duplicated strong promoters, we assembled tandem promoters of different homologous genes from different species. To achieve resistance marker-free enzyme in the food industry, we first removed the replication origin and corresponding resistance marker of Escherichia coli from the expression vector. The plasmid was then transformed into the B. subtilis host, and the Kan resistance gene in the expression plasmid was directly edited and silenced using the CRISPR/Cas9n-AID base editing system. As a result, a recombinant protein expression carrier without resistance markers was constructed, and the enzyme activity of the BlGGT strain during shake flask fermentation can reach 53.65 U/mL. The recombinant BlGGT was immobilized with epoxy resin and maintained 82.8% enzyme activity after repeated use for 10 times and 87.36% enzyme activity after storage at 4 °C for 2 months. The immobilized BlGGT enzyme was used for the continuous synthesis of theanine with a conversion rate of 65.38%. These results indicated that our approach was a promising solution for improving enzyme production efficiency and achieving safe production of enzyme preparations in the food industry. KEY POINTS: • Efficient expression of recombinant proteins by a combination of dual promoter and dual signal peptide. • Construction of small vectors without resistance markers in B. subtilis using CRISPR/Cas9n-AID editing system. • The process of immobilizing BlGGT with epoxy resin was optimized.


Assuntos
Bacillus licheniformis , Bacillus subtilis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resinas Epóxi , Bacillus licheniformis/genética , Proteínas Recombinantes/genética , Enzimas Imobilizadas/metabolismo
18.
Appl Biochem Biotechnol ; 196(3): 1669-1684, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37378720

RESUMO

Laccase is a multicopper oxidoreductase enzyme that can oxidize organics such as phenolic compounds. Laccases appear to be unstable at room temperature, and their conformation often changes in a strongly acidic or alkaline environment, making them less effective. Therefore, rationally linking enzymes with supports can effectively improve the stability and reusability of native enzymes and add important industrial value. However, in the process of immobilization, many factors may lead to a decrease in enzymatic activity. Therefore, the selection of a suitable support can ensure the activity and economic utilization of immobilized catalysts. Metal-organic frameworks (MOFs) are porous and simple hybrid support materials. Moreover, the characteristics of the metal ion ligand of MOFs can enable a potential synergistic effect with the metal ions of the active center of metalloenzymes, enhancing the catalytic activity of such enzymes. Therefore, in addition to summarizing the biological characteristics and enzymatic properties of laccase, this article reviews laccase immobilization using MOF supports, as well as the application prospects of immobilized laccase in many fields.


Assuntos
Enzimas Imobilizadas , Estruturas Metalorgânicas , Enzimas Imobilizadas/metabolismo , Estabilidade Enzimática , Lacase/metabolismo , Fenóis
19.
J Environ Manage ; 351: 119503, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043312

RESUMO

Human health and the environment are negatively affected by endocrine-disrupting chemicals (EDCs), such as bisphenol A. Therefore, developing appropriate remediation methods is essential for efficiently removing phenolic compounds from aqueous solutions. Enzymatic biodegradation is a potential biotechnological approach for responsibly addressing water pollution. With its high catalytic efficiency and few by-products, laccase is an eco-friendly biocatalyst with significant promise for biodegradation. Herein, two novel supporting materials (NH2-PMMA and NH2-PMMA-Gr) were fabricated via the functionalization of poly(methylmethacrylate) (PMMA) polymer using ethylenediamine and reinforced with graphene followed by glutaraldehyde activation. NH2-PMMA and NH2-PMMA-Gr were utilized for laccase immobilization with an immobilization yield (IY%) of 78.3% and 82.5% and an activity yield (AY%) of 81.2% and 85.9%, respectively. Scanning electron microscope (SEM) and Fourier-transform infrared (FTIR) were used to study the characteristics of fabricated material supports. NH2-PMMA-Gr@laccase exhibited an optimal pH profile from 4.5 to 5.0, while NH2-PMMA@laccase exhibited optimum pH at 5.0 compared to a value of 4.0 for free form. A wider temperature ranges of 40-50 °C was noted for both immobilized laccases compared to a value of 40 °C for the free form. Additionally, it was reported that immobilized laccase outperformed free laccase in terms of substrate affinity and storage stability. NH2-PMMA@laccase and NH2-PMMA-Gr@laccase improved stability by up to 3.9 and 4.6-fold when stored for 30 days at 4 °C and preserved up to 80.5% and 86.7% of relative activity after ten cycles of reuse. Finally, the degradation of BPA was achieved using NH2-PMMA@laccase and NH2-PMMA-Gr@laccase. After five cycles, NH2-PMMA@laccase and NH2-PMMA-Gr@laccase showed that the residual degradation of BPA was 77% and 84.5% using 50 µm of BPA. This study introduces a novel, high-performance material for organic pollution remediation in wastewater that would inspire further progress.


Assuntos
Grafite , Nanoestruturas , Humanos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lacase/química , Lacase/metabolismo , Polimetil Metacrilato , Concentração de Íons de Hidrogênio
20.
Biotechnol Lett ; 46(1): 85-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064041

RESUMO

The objective of this study was to obtain sufficient information on the thermal stabilization of a food-grade lipase from Thermomyces lanuginosus (TLL) using the immobilization technique. To do this, a new non-porous support was prepared via the sequential extraction of SiO2 from rice husks, followed by functionalization with (3-aminopropyl) triethoxysilane - 3-APTES (Amino-SiO2), and activation with glutaraldehyde - GA (GA-Amino-SiO2). We evaluated the influence of GA concentration, which varied from 0.25% v v-1 to 4% v v-1, on the immobilization parameters and enzyme thermal stabilization. The thermal inactivation parameters for both biocatalyst forms (soluble or immobilized TLL) were calculated by fitting a non-first-order enzyme inactivation kinetic model to the experimental data. According to the results, TLL was fully immobilized on the external support surface activated with different GA concentrations using an initial protein load of 5 mg g-1. A sharp decrease of hydrolytic activity was observed from 216.6 ± 12.4 U g-1 to 28.6 ± 0.9 U g-1 of after increasing the GA concentration from 0.25% v v-1 to 4.0% v v-1. The support that was prepared using a GA concentration at 0.5% v v-1 provided the highest stabilization of TLL - 31.6-times more stable than its soluble form at 60 °C. The estimations of the thermodynamic parameters, e.g., inactivation energy (Ed), enthalpy (ΔH#), entropy (ΔS#), and the Gibbs energy (ΔG#) values, confirmed the enzyme stabilization on the external support surface at temperatures ranging from 50 to 65 °C. These results show promising applications for this new heterogeneous biocatalyst in industrial processes given the high catalytic activity and thermal stability.


Assuntos
Lipase , Oryza , Propilaminas , Silanos , Lipase/metabolismo , Dióxido de Silício , Glutaral , Enzimas Imobilizadas/metabolismo , Termodinâmica , Estabilidade Enzimática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...